Characteristic Impedance

 $Z_0 = \frac{138}{\sqrt{e}} \log_{10} \frac{D}{d}$...ohms

Phase

$$\phi = \frac{30.5 \text{ x F x L (inches)}}{\text{Vp}} \qquad \triangle \phi = \frac{\text{PPM x 30.5 x F x L (inches)}}{\text{Vp x 10}^6}$$

Capacitance

$$C = \underbrace{7.38 \ e}_{log_{10}} \underbrace{\dots pF/ft}_{d} \qquad C = \underbrace{24.2 \ e}_{log_{10}} \underbrace{\dots pF/m}_{d}$$

Delay

T = 1.016 √e	ns/ft	T = 3.33 √e	ns/m
$L = \frac{0.984T}{\sqrt{e}}$	ft	L = <u>0.300 T</u> √e	m

Velocity of Propagation

 $Vp = \frac{1}{\sqrt{e}}x \ 100 \qquad \dots \% \ of \ Free-Space \ Velocity$

Cutoff Frequency

 $F_{co} = \frac{7.5}{\sqrt{e (D + d)}}$... GHz

Attenuation (Theoretical) at 20° C

$$\alpha = \underbrace{0.434 \sqrt{F}(\sqrt{R_1} + \sqrt{R_2})}_{Z_0} + 2.78 \text{ F } \sqrt{e P_f} \qquad \dots dB/100 \text{ ft}$$

Symbols

- e Relative Dielectric Constant
- Z₀ Characteristic Impedance
- D Dielectric Diameter (inches)
- d Center Conductor Diameter (inches)
- T Time in Nanoseconds
- L Length
- Vp Velocity of Propagation
- Fco Cutoff Frequency
- α Attenuation
- R_{1} $\$ Ratio of Center Cond. Conductivity to Copper
- $R_{\scriptscriptstyle 2}$ $\,$ Ratio of Outer Cond. Conductivity to Copper $\,$
- P_f Dielectric Power Factor
- F Frequency in GHz